
ตัวอย่างการทำระบบ Hand Tracking ของมือ แบบ Real-time ด้วย MediaPipe Library ภาษา Python ของ Google สำหรับผู้ที่สนใจทำระบบการตรวจจับท่าทางของมือ
ในบทเรียนนี้อาจจะต้องศึกษาบทเรียนก่อนหน้า:
- OpenCV Archives | Game & Mobile Development AR VR XR (daydev.com)
- การประมวลผลรู้จำใบหน้า Face Recognition ด้วย Python
- Python การใช้ Deep Learning ปรับภาพขาวดำเป็นภาพสี BW to Color ร่วมกับ OpenCV
- Machine Learning ใช้ Python และ OpenCV ทำระบบ Measuring Size ขนาดของวัตถุในภาพ
เพียงแค่รอบนี้เราจะเตียม Python ของเราให้พร้อมครับ สร้างไฟล์ว่า Hand Tracking หลังจากนั้นให้เราไปใช้ตัวอย่าง Library บน GitHub ที่ชื่อว่า MediaPipe ที่นี่ครับ:
Home – mediapipe (google.github.io)
MediaPipe เป็น Machine Learning หรือ Deep Learning ตัวหนึ่งจาก Google ใช้ในการจับท่าทางของมือหรือ Hand Tracking ข้อดีคือความรวดเร็วแบบ Real-time และความง่ายในการเรียกใช้งานได้ อีกทั้ง MediaPipe นั้นก็ค่อนข้างแม่นยำอยู่ระดับหนึ่งเลยในการจับ มือของเรา
เพิ่มเติมอีกเล็กน้อย MediaPipe ยังมีอีกหลาย Solutions เทียบเท่า Face Recognition, Gesture Pose, Knife สำหรับ AR
ทำการติดตั้งโดยพิมพ์คำสั่ง:
1 |
pip install mediapipe |
ทำการติดตั้ง MediaPipe เพื่อใช้งานร่วมกับ OpenCV
ทำการประกาศ OpenCV และจับ Capture Video จาก WebCam จาก Source ตัวอย่างได้เลย
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import copy import argparse import cv2 as cv import numpy as np import mediapipe as mp def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--device", type=int, default=0) parser.add_argument("--width", help='cap width', type=int, default=960) parser.add_argument("--height", help='cap height', type=int, default=540) parser.add_argument("--max_num_hands", type=int, default=2) parser.add_argument("--min_detection_confidence", help='min_detection_confidence', type=float, default=0.7) parser.add_argument("--min_tracking_confidence", help='min_tracking_confidence', type=int, default=0.5) parser.add_argument('--use_brect', action='store_true') args = parser.parse_args() return args def main(): # Parameter analysis ################################################################# args = get_args() cap_device = args.device cap_width = args.width cap_height = args.height max_num_hands = args.max_num_hands min_detection_confidence = args.min_detection_confidence min_tracking_confidence = args.min_tracking_confidence use_brect = args.use_brect # Camera preparation ############################################################### cap = cv.VideoCapture(cap_device) cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width) cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height) # Load Model ############################################################# mp_hands = mp.solutions.hands hands = mp_hands.Hands( max_num_hands=max_num_hands, min_detection_confidence=min_detection_confidence, min_tracking_confidence=min_tracking_confidence, ) while True: # Camera Capture ##################################################### ret, image = cap.read() if not ret: break image = cv.flip(image, 1) # ミラー表示 debug_image = copy.deepcopy(image) image = cv.cvtColor(image, cv.COLOR_BGR2RGB) results = hands.process(image) if results.multi_hand_landmarks is not None: for hand_landmarks, handedness in zip(results.multi_hand_landmarks, results.multi_handedness): cx, cy = calc_palm_moment(debug_image, hand_landmarks) brect = calc_bounding_rect(debug_image, hand_landmarks) debug_image = draw_landmarks(debug_image, cx, cy, hand_landmarks, handedness) debug_image = draw_bounding_rect(use_brect, debug_image, brect) cv.putText(debug_image, " ", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2, cv.LINE_AA) key = cv.waitKey(1) if key == 27: # ESC break cv.imshow('MediaPipe Hand Tracking', debug_image) cap.release() cv.destroyAllWindows() def calc_palm_moment(image, landmarks): image_width, image_height = image.shape[1], image.shape[0] palm_array = np.empty((0, 2), int) for index, landmark in enumerate(landmarks.landmark): landmark_x = min(int(landmark.x * image_width), image_width - 1) landmark_y = min(int(landmark.y * image_height), image_height - 1) landmark_point = [np.array((landmark_x, landmark_y))] if index == 0: palm_array = np.append(palm_array, landmark_point, axis=0) if index == 1: palm_array = np.append(palm_array, landmark_point, axis=0) if index == 5: palm_array = np.append(palm_array, landmark_point, axis=0) if index == 9: palm_array = np.append(palm_array, landmark_point, axis=0) if index == 13: palm_array = np.append(palm_array, landmark_point, axis=0) if index == 17: palm_array = np.append(palm_array, landmark_point, axis=0) M = cv.moments(palm_array) cx, cy = 0, 0 if M['m00'] != 0: cx = int(M['m10'] / M['m00']) cy = int(M['m01'] / M['m00']) return cx, cy def calc_bounding_rect(image, landmarks): image_width, image_height = image.shape[1], image.shape[0] landmark_array = np.empty((0, 2), int) for _, landmark in enumerate(landmarks.landmark): landmark_x = min(int(landmark.x * image_width), image_width - 1) landmark_y = min(int(landmark.y * image_height), image_height - 1) landmark_point = [np.array((landmark_x, landmark_y))] landmark_array = np.append(landmark_array, landmark_point, axis=0) x, y, w, h = cv.boundingRect(landmark_array) return [x, y, x + w, y + h] def draw_landmarks(image, cx, cy, landmarks, handedness): image_width, image_height = image.shape[1], image.shape[0] landmark_point = [] for index, landmark in enumerate(landmarks.landmark): if landmark.visibility < 0 or landmark.presence < 0: continue landmark_x = min(int(landmark.x * image_width), image_width - 1) landmark_y = min(int(landmark.y * image_height), image_height - 1) # landmark_z = landmark.z landmark_point.append((landmark_x, landmark_y)) if index == 0: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 1: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 2: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 3: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 4: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 5: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 6: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 7: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 8: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 9: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 10: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 11: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 12: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 13: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 14: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 15: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 16: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 17: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 18: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 19: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 20: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if len(landmark_point) > 0: cv.line(image, landmark_point[2], landmark_point[3], (0, 255, 0), 2) cv.line(image, landmark_point[3], landmark_point[4], (0, 255, 0), 2) cv.line(image, landmark_point[5], landmark_point[6], (0, 255, 0), 2) cv.line(image, landmark_point[6], landmark_point[7], (0, 255, 0), 2) cv.line(image, landmark_point[7], landmark_point[8], (0, 255, 0), 2) cv.line(image, landmark_point[9], landmark_point[10], (0, 255, 0), 2) cv.line(image, landmark_point[10], landmark_point[11], (0, 255, 0), 2) cv.line(image, landmark_point[11], landmark_point[12], (0, 255, 0), 2) cv.line(image, landmark_point[13], landmark_point[14], (0, 255, 0), 2) cv.line(image, landmark_point[14], landmark_point[15], (0, 255, 0), 2) cv.line(image, landmark_point[15], landmark_point[16], (0, 255, 0), 2) cv.line(image, landmark_point[17], landmark_point[18], (0, 255, 0), 2) cv.line(image, landmark_point[18], landmark_point[19], (0, 255, 0), 2) cv.line(image, landmark_point[19], landmark_point[20], (0, 255, 0), 2) cv.line(image, landmark_point[0], landmark_point[1], (0, 255, 0), 2) cv.line(image, landmark_point[1], landmark_point[2], (0, 255, 0), 2) cv.line(image, landmark_point[2], landmark_point[5], (0, 255, 0), 2) cv.line(image, landmark_point[5], landmark_point[9], (0, 255, 0), 2) cv.line(image, landmark_point[9], landmark_point[13], (0, 255, 0), 2) cv.line(image, landmark_point[13], landmark_point[17], (0, 255, 0), 2) cv.line(image, landmark_point[17], landmark_point[0], (0, 255, 0), 2) if len(landmark_point) > 0: cv.circle(image, (cx, cy), 12, (0, 255, 0), 2) cv.putText(image, handedness.classification[0].label[0], (cx - 6, cy + 6), cv.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2, cv.LINE_AA) return image def draw_bounding_rect(use_brect, image, brect): if use_brect: cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[3]), (0, 255, 0), 2) return image if __name__ == '__main__': main() |
Code ดูยาวอธิบายง่ายๆ
จะใช้การจับภาพจาก webcam แบบ Real-Time ต่อเนื่องโดยใช้ while loop แสดงผลต่อกันเป็นวิดีโอ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
while True: # Camera Capture ##################################################### ret, image = cap.read() if not ret: break image = cv.flip(image, 1) # ミラー表示 debug_image = copy.deepcopy(image) image = cv.cvtColor(image, cv.COLOR_BGR2RGB) results = hands.process(image) if results.multi_hand_landmarks is not None: for hand_landmarks, handedness in zip(results.multi_hand_landmarks, results.multi_handedness): cx, cy = calc_palm_moment(debug_image, hand_landmarks) brect = calc_bounding_rect(debug_image, hand_landmarks) debug_image = draw_landmarks(debug_image, cx, cy, hand_landmarks, handedness) debug_image = draw_bounding_rect(use_brect, debug_image, brect) cv.putText(debug_image, " ", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2, cv.LINE_AA) key = cv.waitKey(1) if key == 27: # ESC break cv.imshow('MediaPipe Hand Tracking', debug_image) cap.release() cv.destroyAllWindows() |
จับ Palm connector มือของเราทันที
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
def draw_landmarks(image, cx, cy, landmarks, handedness): image_width, image_height = image.shape[1], image.shape[0] landmark_point = [] for index, landmark in enumerate(landmarks.landmark): if landmark.visibility < 0 or landmark.presence < 0: continue landmark_x = min(int(landmark.x * image_width), image_width - 1) landmark_y = min(int(landmark.y * image_height), image_height - 1) # landmark_z = landmark.z landmark_point.append((landmark_x, landmark_y)) if index == 0: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 1: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 2: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 3: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 4: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 5: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 6: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 7: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 8: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 9: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 10: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 11: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 12: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 13: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 14: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 15: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 16: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if index == 17: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 18: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 19: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) if index == 20: cv.circle(image, (landmark_x, landmark_y), 5, (0, 255, 0), 2) cv.circle(image, (landmark_x, landmark_y), 12, (0, 255, 0), 2) if len(landmark_point) > 0: cv.line(image, landmark_point[2], landmark_point[3], (0, 255, 0), 2) cv.line(image, landmark_point[3], landmark_point[4], (0, 255, 0), 2) cv.line(image, landmark_point[5], landmark_point[6], (0, 255, 0), 2) cv.line(image, landmark_point[6], landmark_point[7], (0, 255, 0), 2) cv.line(image, landmark_point[7], landmark_point[8], (0, 255, 0), 2) cv.line(image, landmark_point[9], landmark_point[10], (0, 255, 0), 2) cv.line(image, landmark_point[10], landmark_point[11], (0, 255, 0), 2) cv.line(image, landmark_point[11], landmark_point[12], (0, 255, 0), 2) cv.line(image, landmark_point[13], landmark_point[14], (0, 255, 0), 2) cv.line(image, landmark_point[14], landmark_point[15], (0, 255, 0), 2) cv.line(image, landmark_point[15], landmark_point[16], (0, 255, 0), 2) cv.line(image, landmark_point[17], landmark_point[18], (0, 255, 0), 2) cv.line(image, landmark_point[18], landmark_point[19], (0, 255, 0), 2) cv.line(image, landmark_point[19], landmark_point[20], (0, 255, 0), 2) cv.line(image, landmark_point[0], landmark_point[1], (0, 255, 0), 2) cv.line(image, landmark_point[1], landmark_point[2], (0, 255, 0), 2) cv.line(image, landmark_point[2], landmark_point[5], (0, 255, 0), 2) cv.line(image, landmark_point[5], landmark_point[9], (0, 255, 0), 2) cv.line(image, landmark_point[9], landmark_point[13], (0, 255, 0), 2) cv.line(image, landmark_point[13], landmark_point[17], (0, 255, 0), 2) cv.line(image, landmark_point[17], landmark_point[0], (0, 255, 0), 2) if len(landmark_point) > 0: cv.circle(image, (cx, cy), 12, (0, 255, 0), 2) cv.putText(image, handedness.classification[0].label[0], (cx - 6, cy + 6), cv.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2, cv.LINE_AA) return image |
ค่อนข้างมีการประมวลผลเยอะ มันจะวิ่งหาตำแหน่ง Landmark บนมือของเราระบุรายละเอียด ขนาดที่แตกต่างกันของมือแต่ละข้าง เก็บข้อมูลที่ได้มาจาก LandMark ไว้ในตัวแปร หากสังเกตจะเห็นว่ามีหลาย landmark มาก
เอาละเราลองมา Track และแสดงผลท่าทางของมือกันหน่อยมี Video นะ
บทเรียนหน้าเป็น Holistic จับ Body และ ใบหน้า Source ก็ใน Github นั่นแหละครับ เลยรีวิวไม่เยอะมาก Copy ก็ใช้ได้แล้ว!